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Abstract. Cooperative behavior is commonly understood as that which
is conducive to the good of the group: it is increasingly seen as a crucial
component of advancing the capabilities as well as mitigating the harms
of multi-agent Al systems [21, 6, 10]. Yet an “I’'ll-know-it-when-I-see-it”
approach is often taken when evaluating the cooperativeness of a sequence
of actions, and even when cooperation is formalized, the definitions lead
to category errors, conceptual confusions, and erroneous conclusions
[22, 11, 56, 52]. We propose a formal measure of cooperation in stochastic
games that avoids these pitfalls by being counterfactually contrastive,
contextual, and customizable: in particular, cooperation is defined in
contrast to the outcome that a self-interested actor would have effected
in a similar circumstance, in the context of other agents’ behavior, and
within a specified time and space horizon. This measure is simple to
compute: it is dependent only on solving a reduction of the multi-agent
game to a single-agent Markov decision process. We apply this measure to
a diverse pool of behaviors in a number of mixed-motive social dilemmas
and sequential predator-prey environments that have been studied in the
multi-agent systems literature [4, 26, 34, 15, 36]. Our results demonstrate
the importance of defining cooperation clearly, and provide a useful
metric for builders of cooperative systems to use when establishing the
cooperative nature of the system behavior.

Keywords: Cooperation - Multi-Agent Systems - Reinforcement Learn-
ing - Social Dilemmas.

1 Introduction

In the trees of the Tai Forest in Cote d’Ivoire, chimpanzees hunt for red colobus
monkeys in groups. Each chimpanzee shares the goal of hunting the monkey, and
each chimpanzee benefits from the participation of the other chimpanzees in order
to increase the likelihood that the prey is caught. Therefore, each chimpanzee is
acting in a way that is conducive to the good of the group—this would appear
to be a paradigmatic case of cooperative behavior.

However, there is another characterization of this sequence of events [47]. One
chimpanzee initiates the hunt in the knowledge that other chimpanzees are in
the area, and then each other chimpanzee will in turn take the position that best
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maximizes its own likelihood of catching the prey. This has the cumulative effect
of each chimpanzee blocking the monkey’s next best path of escape. Importantly,
each of the chimpanzees takes these actions individually and makes its plans
solely according to its own self-regard; there is no central planning.

A similar dynamic can arise within artificial systems. Although central plan-
ning is possible in theory and may be more likely to lead to desirable outcomes,
due to its computational demand the approach is often eschewed in favor of
agents who learn and act independently in an environment without regard to the
other agents’ utilities [11]. In many cases, this can still lead to an outcome that
is beneficial to all of the agents [44].

In order to evaluate the cooperativeness of group behavior in both artificial
multi-agent systems and biological species, we need to be able to measure the
cooperativeness of these systems [7, 6]. However, as the preceding examples
show, behavior that increases the total utility of the group is not necessarily
cooperative—in other words, the cooperativeness of behavior is underdetermined
by the actual sequence of events [31].

Previous work studying cooperation in artificial systems has focused on the
design of environments within which cooperation can be understood, using these
to investigate what mechanisms can drive cooperation [4, 22, 15, 16, 32, 10, 9].
However, cooperative behavior is typically either declared so by fiat, or is defined
only in relation to the actual group outcome, without reference to the actions of
uncooperative agents. An alternative to this is to measure the alignment between
individual and collective interests in the system as a whole, such as through the
price of anarchy [19] or the self-interest level [53].

In this paper, we propose a family of scalar measures of cooperation capable of
precluding cases such as that of unintended mutual benefit by being counterfactu-
ally contrastive: we subtract from the group’s total utility the amount that would
have been attained had the agent in question acted purely in their self-interest.
Our approach is agnostic to the mechanisms that distinguish between cooperative
and competitive modes of group behavior [17, 46, 45], and it does not require
any manipulations of the external rewards in the environment [27]. Moreover, we
allow our measure to be contextual, in that it is relative to other agents’ behavior,
as well as customizable with respect to the time and space horizons, which can
help to disambiguate other gray areas of cooperative behavior that have been
previously studied.

We define our measure on stochastic games, a formalization of multi-agent
systems that allow for the application of our measure on a broad class of arti-
ficial agents, as well as biological agents that can be modelled in this way [41].
Using this definition, we evaluate the behavior of multiple classes of agents with
different types of behavior in tabular social dilemmas, a common test bed in a
variety of disciplines for understanding cooperation [4], as well as more complex
predator-prey environments. We show that many of these behaviors are no longer
regarded as cooperative when our measure is applied to it, and other seemingly
uncooperative behaviors become otherwise according to our measure. Crucially,
by making explicit the components of the measure, our measure can provide
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an interpretable explanation of why behavior is cooperative or uncooperative.
Moreover, by making the choice of social welfare function one of these components,
our measure also explains the respect in which this behavior is cooperative, either
by achieving a greater total utility, or a more equitable or fair outcome.

2 Related work

Cooperation has long been a subject of study in disciplines ranging from philoso-
phy and economics to evolutionary biology and cognitive science [4, 47, 49, 20]. For
a comprehensive review of the study of cooperation in the context of multi-agent
RL, refer to [55].

In order to study cooperation with computational models, an initial approach
is simply to declare behaviors as cooperative or defecting by fiat. For example, in
the Prisoner’s Dilemma, the classic one-shot social dilemma game, the available
actions to each player are to “Cooperate” or “Defect”. The conclusions drawn
from analyses of this game are subsequently generalized about cooperation as
a broader concept [4]. While there are some attempts to expand this approach
to multi-step environments by measuring the success of introduced mechanisms
or the frequency that certain tasks are performed,® this approach generally fails
as we begin to examine systems acting in more complex environments that are
capable of a richer range of behaviors. In particular, these behaviors will arguably
now be cooperative to different degrees, with the cooperativeness of each behavior
not necessarily being obvious [22].

Hence the need to define a measure on the cooperativeness of behavior. At a
first pass, we might do this by simply evaluating the sum of all utilities attained by
the group, also referred to as the utilitarian welfare [15, 23]; other welfare metrics
such as fairness or sustainability could also be considered [3]. One drawback of
this approach is that the cooperativeness of behavior is defined on groups as a
whole, whereas it would be desirable for a measure to tell us if one agent were
acting more cooperatively than others within the group.

More importantly, however, solely evaluating the actual outcome erroneously
includes cases such as the aforementioned chimpanzee group hunting in which a
mutually beneficial outcome results from individual agents acting solely in their
own self-regard. A related phenomenon occurs in evolutionary biology in which
two species feed upon the waste product of the other: this is known as byproduct
reciprocity. Unless this behavior is selected for because of the beneficial effect on
the recipient (or at least partially because of this effect), this is not classed as
cooperation [52].

Another issue when defining cooperation relates to the time horizon over
which it is evaluated. The utility accrued from a group behavior, either to the
individual or the entire group, may vary in its magnitude and valence over time.
For example, reciprocally altruistic individuals take turns helping each other in
a costly way with the expectation that they will be helped in the future [48].

! Refer to [9] for an overview of such metrics in the cooperative multi-agent learning
literature.
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The term “altruism” is commonly taken to be a misnomer in relation to this
phenomenon [13, 52], and this mistake can be clarified with appeal to the time
horizon in question: while the behavior is costly to the agent performing it in the
short term, in the long term we expect that the reciprocated benefits will justify
this cost, so that the behavior can eventually be considered as self-interested.

3 Desiderata for a measure of cooperation

To address these common pitfalls, we divide the desiderata for a measure of coop-
eration into three broad categories: that it should be counterfactually contrastive,
customizable, and contextual.

Counterfactually contrastive The absolute returns in total utility can be a
misleading guide to the cooperativeness of a system: in certain situations, these
returns might result without any cooperation taking place. We call a measure
counterfactually contrastive if it sets as a baseline the behavior of agent(s) acting
uncooperatively.

We base our measure on the contrast between an agent acting in accordance
with its own goals, rather than the goals of the group. This is much simpler to
evaluate for any given agent, as we need only consider what that agent’s best
response is to the behavior of the rest of the system, assuming the agent is only
concerned with its own goals. This captures the individualized description of
what truly occurs during chimpanzee group hunting [47].

Customizable A measure of cooperation should be customizable insofar as it allows
variations to certain components that are key to determining how cooperative a
given behavior is.

One such component is the time scale over which the behavior is evaluated.
This is important for understanding the challenge posed by direct fitness expla-
nations of cooperation: the self-interested benefits of direct fitness accrue only
in the long term, whereas in the short term the behavior in question may seem
counterintuitive from the self-interested perspective. Moreover, this addresses
the challenge posed by cases of reciprocal altruism, as discussed in the previous
section.

Another important component of any evaluation of cooperative behavior is
the way in which social outcomes are valued: while a typical choice would be
to take the sum of all relevant agents’ utilities, this does not always capture
everything that we care about for a given outcome. For instance, we might instead
evaluate success in terms of the utility of the worst-off agent, or in terms of the
equitability of outcomes for each individual agent. The choice of metric for each
social outcome will vary depending on the multi-agent system in question, and
should not be held as a fixed component of the cooperative measure.

Contertual Finally, a measure should be contextual, so as to reflect the idea
that the cooperativeness of an individual agent’s actions depends on those of
the other agents in the system they are interacting in. Hence, when measuring
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the cooperativeness of the agent, it will always be relative to the other agents in
question.

By making the measure contextual, we also make explicit the subgroup of
agents on which the social outcomes are considered. While this subgroup may
include all of the agents in the environment, this is not a requirement: in the
example of predator-prey interactions, we do not consider the utility of the prey
to be a factor in the cooperativeness of the group hunting behavior.

4 Measuring cooperation in stochastic games
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Fig. 1. A schematic of the cooperation measure. A multiagent system consisting of three
robots (Blue, Orange, and Green) has three outcomes, one actual and two potential,
with utilities to each agent represented by stacked colored bars. The cooperativeness
measure for Blue’s policy consists of subtracting from the actual welfare (given here by
total utility) the welfare for the selfish outcome, that is, the outcome for which Blue’s
utility is the largest.
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We define our measure of cooperation within the framework of stochastic
games [40, 41], defined as a tuple (S, N, A, P, R,~) consisting of a state space
S, a finite set of agents N indexed by i, a set of available actions A =[], A
for each agent, a transition probability function P: S x A x S — [0, 1], a scalar
reward function for each agent R = (r(),....r")) where 7(V: § x A — R, and
a discount factor v € [0, 1].

Each state s can be considered as its own normal form game. We can there-
fore consider the space of Markov strategies (or policies) 7(V: S x A — [0, 1]
specifying the probability of taking each possible action a(®) in state s. Assuming
the agents follow policies 7 = (71'(1)7 e W(N)), we define the value of a state s for
agent i to be the expected discounted sum of rewards for that agent:

o0
V(s) = Eq lz YO (s, ay)
t=T

ST = s] . (1)
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To measure the social outcome of a stochastic game, we use a welfare metric
w that is a function of each agent’s value function and some distribution over the
states p € AS. A typical choice for these is to use the utilitarian welfare weighted
by the initial state distribution as our metric, wy : (7 p0) = > g sz\il £0 (s)V,(,Z) ().

If we fix the policies of all agents except for i (denoting these as 7(~%),
the stochastic game reduces to a single-agent Markov Decision Process (MDP).
Let BR; (w(*i)) denote the (non-empty) set of optimal policies (or best responses)
for agent i in the context of the other agents choosing policies (=9, i.e., the set
of solutions to the single-agent MDP.

Finally, we define our measure of cooperation for a policy 7(¥) in the context
of w(=% as the welfare of these policies, minus the best possible welfare of agent
1’s best response policy:

A schematic diagram explaining this definition can be seen in Fig. 1.

By defining a scalar measure for cooperation, we are now able to evaluate
the degree to which a policy is cooperative or uncooperative, and therefore we
can also make comparative judgements between different policies. Intuitively, the
measure evaluates the extent to which policy 7#(¥) improves the social welfare
over the (best) outcome that would have resulted from the agent acting purely
in its self-interest.

This definition is clearly contextual, as the cooperativeness of 7(?) depends
on the context of the other agents’ policies 7w(=%). Moreover, the definition clearly
depends on the choice of welfare and discount factor. Each of these serves as an
example of the measure’s customizability, with the discount factor capturing the
notion of a relevant time horizon.

The measure is also counterfactually contrastive in the sense set out above.
In this case, we take the relevant counterfactual to hold fixed the policies of
the other agents, and consider a self-interested agent to be one who maximizes
its value in response to these policies. This contrasts with the counterfactuals
considered by cooperative MARL algorithms such as COMA [12] and SHAQ [51],
in which only the actions of other agents are held fixed.

It further contrasts with credit assignment methods from cooperative game
theory such as the Shapley value, which poses a different kind of counterfactual
based on an agent’s presence or absence from a group [39]. While the Shapley
value answers a combinatorial question about the value of an agent’s participation,
our approach instead considers the continuous value of policies to evaluate how an
agent acted relative to how it might have acted. This allows for a more nuanced
analysis of behavior within a fixed set of agents, a question that the Shapley
value does not address.

In environments represented by a sufficiently small state space, we can compute
optimal policies to arbitrary precision with value iteration [43], although for more
complex systems we can also approximate the cooperation measure by using
reinforcement learning to find approximate solutions to this problem.
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5 Experiments

5.1 Matrix Game Social Dilemmas

Prisoner's Dilemma Stag Hunt Chicken Byproduct Mutualism
Column Player Column Player
[ D c D

Column Player Column Player
c D [ D
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Fig. 2. The four varieties of matrix game social dilemmas: the Prisoner’s Dilemma,
Stag Hunt, Chicken, and Byproduct Mutualism. The top row shows the payoff matrices
for each game, with the colors representing the value of the total utility (calculated by
adding the players’ payoffs in each cell). The bottom row shows the heatmaps for the

cooperativeness score for the row player’s action in the context of the column player’s
action.

Total Utility
Row Player

Cooperativeness
Row Player

To motivate the applicability of our measure, we begin by evaluating the
cooperativeness of different strategies in four matrix games. The first three of
these are the canonical one-shot social dilemmas that are designed to elucidate
the opposing pressures of individual rationality and ideal collective action [8,
25, 35, 26]. These dilemmas are therefore designed so as to clearly differentiate
between cooperative and uncooperative behavior in a way that ought to be
apparent in our measure.

In these games, two agents have the choice of actions C' (for Cooperate) or D
(for Defect). The agents prefer mutual C' to mutual D, mutual C to unilateral
C, and mutual C yields a higher total utility than mutual D. However, in each
game, we have that either unilateral D is preferable to mutual C' (so that you
can do better by exploiting a cooperator than cooperating with one), or that
mutual D is preferable to unilateral C' (so that being exploited is worse than
not cooperating with a would-be exploiter). Chicken meets only the first of these
disjuncts, Stag Hunt only the second, and Prisoner’s Dilemma meets both.

The bottom row of Fig. 2 shows the cooperativeness of each row player’s
action in the context of the column player’s action, using total utility as welfare.
Holding fixed this context, we see that C is always strictly more cooperative
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than D, supporting the interpretation of C' and D as cooperation and defection,
respectively. Notably, in Byproduct Mutualism there is no pair of actions with
a positive cooperativeness score. This is due to the fact that in this game the
dilemma is completely relaxed: it is better to cooperate irrespective of the
partner’s decision, and so the choices that lead to the highest collective utility
are also precisely the ones that self-interested actors would take.

5.2 Iterated Social Dilemmas
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Fig. 3. Cooperativeness of six common Fig. 4. Cooperativeness of six common de-
deterministic policies in the Iterated Pris- terministic policies in the context of Tit-
oner’s Dilemma, in the context of each for-Tat in the iterated Prisoner’s Dilemma,
other policy. The cooperativeness is val- plotted against the discount factor ~. As
ued on the initial state, with a discount the ALL_C, TFT, PAVLOV, and GRIM strategies
factor v = 0.9. all cooperate on the initial time-step, their

outcomes playing against TFT are identical

and so their cooperativeness ratings overlap.

When we move to the iterated Prisoner’s Dilemma, in which agents interact
in a Prisoner’s Dilemma ad infinitum, there is no strictly dominant individual
strategy in this game.? Nonetheless, a number of strategies have been proposed
with desirable properties [4, 30, 42]. We limit our strategies to those that depend
on at most one previous interaction, referred to as memory-1 strategies: this
includes strategies such as (Suspicious)-Tit-for-Tat ((S)TFT), Win-Stay-Lose-
Shift (PAVLOV), and Grim (GRIM) (and their stochastic variants), but excludes
others such as Tit-for-Two-Tats or Majority that require keeping track of a longer
history. Hence, the MDP that arises from fixing the opponent’s strategy to one
of these will have five states (one for each possible action combination, and an
additional initial state), making it tractable to solve so that we can compute the
cooperativeness scores to arbitrary precision with value iteration [43].

2 Refer to Appendix B for analyses of the iterated Chicken and Stag Hunt.
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Fig. 3 shows the cooperativeness measure applied to six deterministic memory-
1 strategies, with each strategy being evaluated in the context of the other agent
adopting every other strategy from the group. Strategies that take action C in
more states generally score higher than strategies that take action D. However,
we also see that the context policy plays an important role in determining the
cooperativeness of the evaluated policy. In particular, in the context of policies
that punish defection (either for one turn as in the case of (S)TFT or forever
as in the case of GRIM), ALL_C does not rank as cooperative, as it becomes the
best-response strategy. This supports the intuition that cooperating in the face of
potential punishment is not as cooperative as unconditional cooperation, allowing
us to distinguish between coercion and cooperation [37].

We also see the impact that the discount factor has on the measure of
cooperativeness. If the column player adopts the TFT policy, then a row player
will be able to exploit the fact that this strategy cooperates in the initial turn,
at the expense of a defection in the subsequent turn. Therefore, if future rewards
are sufficiently discounted relative to immediate rewards, it is optimal for the
row player to initially defect. However, if future rewards are not significantly
discounted, then it is in the row player’s best interest to always cooperate. Fig. 4
shows the cooperativeness of each memory-1 strategy in the context of TFT plotted
against the discount factor: cooperative policies such as ALL_C score positively on
cooperativeness for lower values of the discount factor, with the score eventually
tending towards zero. On the other hand, defecting policies such as ALL_D have
cooperativeness scores that begin at zero before tending towards —oo.

5.3 Tabular Cleanup

Though iterated matrix games can lead to a richer range of behaviors through the
use of memory-based strategies, the actions themselves that these strategies are
defined over nonetheless treat cooperate and defect as primitives. A more faithful
depiction of social dilemmas demands more complex strategies that apply to
policies over richer action and state space. To this end, we investigate a simplified
version of the social dilemma Cleanup [34, 15, 1, 14, 50]. This is an example of a
public goods dilemma, in which an individual must pay a personal cost in order
to provide a resource that is shared by all [18].

This game consists of N players who can choose between the actions Clean,
Eat, and Punish Player i for ¢ = 1, ..., N. The state space consists of the actions
taken by each player at the previous time-step, and the number of apples currently
available, which can range from 0 to 3N — 1. An apple grows with a probability
linearly proportional to the number of agents choosing Clean, with the probability
ranging from 0 to 1. If an agent chooses to eat an apple, it receives a reward of
+1.0, unless there are fewer apples available than agents eating, in which case
the reward is divided amongst the eaters. If an agent chooses to punish another
agent, it imposes a —2.0 reward deduction from the target, at an expense of —0.5
reward. For N = 2, we exclude the possibility of self-punishment for simplicity.

We consider two- and three-player instantiations of Tabular Cleanup, leading
to state spaces of sizes 54 and 1125, respectively. This includes states which are
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not reachable from any other state: we therefore define the distribution over
initial states according to the states reached by starting with a uniformly random
choice over actions and numbers of apples. We evaluate the following policies:3

— Always X: This policy takes a constant action across all states.

— Take Turns: This policy alternates between cleaning and eating.

— TFT: This policy reciprocates the action taken by its co-player in the previous
timestep.

— Nash: This policy cleans when there are no apples available, and eats otherwise.
As the name suggests, this is a Nash equilibrium to the game.

— Prosocial: This policy cleans when there are fewer apples available than the
number of players, and eats otherwise. This was derived by solving the MDP
derived from the two-player game with a centralized actor controlling both
agents, and a reward consisting of the sum of the player’s rewards.

AwaysClean -7.5 14 45 12 -08 -59 -14 Always Clean -12.8 0.8 -63 08 -68 -13.0 09 06
-5
--10 - - - - - - - -
PN | o7 | a5 |« | | ao | oa AwaysEat 3.7 -20 27 -08 58 -86 -20 -1.3
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Fig. 5. Cooperativeness of deterministic policies in the Tabular Cleanup game, evaluated
on the initial state with a discount factor of v = 0.9. Left: Seven policies in the 2-player
version, each in the context of every other policy. Right: Eight policies in the 3-player
version, where the acting policy is in the context of two other players using the same
policy.

Fig. 5 shows the results of evaluating each of these policies in a variety of
contexts. As expected, the Prosocial policy is the most cooperative on average
across all contexts, and Always Punish the least. However, in many contexts,
Always Clean is less cooperative than Always Eat, and Take Turns is more
cooperative than both. This can be explained by the fact that eating contributes
to the collective reward through adding to your own reward, and so choosing
to clean in states where there are a sufficient number of apples for all agents
needlessly forgoes a reward that contributes to the joint welfare. While such a

3 Refer to Sec A for the definitions of the three-player Tabular Cleanup policy variants.
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result is intuitive, it is obscured by discussions of Cleanup that simply equate
cooperativeness with the frequency at which each agent cleans [15].

These results can also be interpreted as providing a quantitative argument
that specialization can be crucial to cooperation depending on the context. In
the context of an agent that always eats, it is in fact more cooperative to focus
on cleaning. However, in the converse context, eating becomes more imperative
for increasing the joint welfare.

5.4 Multi-agent RL Environments

Finally, we evaluate our measure in partially-observable stochastic games, in
which each agent has only incomplete information on the state of the game by
limiting each agent’s field of vision to a small subgrid of pixel values. Training
agents to maximize rewards in such games typically requires deep reinforcement
learning algorithms such as PPO [38, 54], in addition to policy models based on
neural networks that must first learn to map pixel observations onto appropriate
features. Despite these challenges, our measure of cooperativeness is sufficiently
general to capture such cases by finding an “approximate best-response” that
gives a cooperativeness upper-bound.

Due to this increased complexity, we are no longer able to straightforwardly
define policies by specifying actions on individual states. Instead, we define
different policies by changing the conditions of the environment in which the RL
algorithm learns a policy, interpreting each policy in relation to the conditions
under which it is trained [22]. In particular, we refer to a policy as selfish if it is
trained to maximize the individual value of the agent following it, and prosocial
if it is trained to maximize the sum of the values of all agents. The goal of this
experiment is to investigate whether these naive interpretations indeed align with
the cooperativeness scores attained for the policies.

We investigate the Simple Tag game, a multi-particle environment [29] in
which “predator” agents pursue “prey” agents for reward. While the reward
structure is typically implemented so that all predators share the reward of
catching individual prey, we contrast this prosocial version with the selfish
version of predators only receiving rewards for the prey that they have caught.
The prey in this case follows a heuristic policy, as in [33].

This game forms a part of JaxMARL suite of benchmarks [36]. By writing the
policy models, the PPO algorithm, and the environments themselves exclusively
in JAX [5], this suite can leverage GPU acceleration, automatic vectorization,
and just-in-time XLA compilation to implement a training pipeline with orders
of magnitude greater efficiency than that of its counterparts. In particular, we
are able to run our experiments over 160 random seeds in a matter of minutes.

Fig. 6 shows the results for Simple Tag with 2 predators and 1 heuristic prey.
We observe several pieces of evidence that in this case the “selfish” policy is more
cooperative than the “prosocial” policy: (i) it has a greater cooperativeness score
in both contexts, with the difference being larger in the context of a “selfish”
policy; (ii) the greater the number of “selfish” policies, the greater the actual
welfare achieved; and (iii) a “selfish” policy in the context of a “prosocial” policy
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Simple Tag: 2 Predators, 1 Prey
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Fig. 6. Results for Simple Tag with 2 predators (and one prey). The y-axis shows
the total utility for the predator under three conditions: the actual outcome for the
evaluated and context policy, the counterfactual of the first agent pursuing a selfish
best-response against the fixed context policy, and the cooperativeness measuring the
difference between the two. These results are taken over 160 seeds, with error bars
showing the 95% CI.

is positively cooperative, and the opposite is anticooperative. However, as in the
hunting scenario described in the introduction, a “selfish” policy in the context of
other “selfish” policies yields a cooperativeness score that does not significantly
differ from the zero point. As would be expected due to the symmetry of the player
roles, the actual outcomes for a “prosocial” policy interacting with a “selfish”
policy do not impact the overall utility. Overall, these results clearly demonstrate
the important roles that context and counterfactual evaluation play in analyzing
the cooperativeness of different behaviors in a predator-prey environment.

6 Conclusion

We motivated and specified a framework for measuring cooperative behavior that
is contextual, customizable, and counterfactually contrastive. The cooperativeness
measure is defined on a broad class of games and is agnostic to the mechanisms
that drive cooperation, making it applicable to a variety of agent models. We then
evaluated this measure on policies of games of increasing complexity, showing that
the measure works in accordance with our intuitions and is capable of precluding
examples of non-cooperative group behavior that contingently provide a group
benefit.
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One possible limitation of our approach is that by making cooperativeness the
property of a stochastic policy rather than a learning algorithm in the RL case,
we don’t take into account the possibility of the context agent adapting to the
other agent—this would be more challenging to define due to the dynamic nature
of returns in multi-agent RL. Nonetheless, a promising direction for future work
is to apply our measure to analyze policies generated by cooperation-oriented
learning algorithms. For instance, our framework could be used to quantitatively
examine how systems trained with concepts like altruistic regret, as explored by
[24], translate their learning objectives into behavior that is cooperative by our
introduced metric.

Our framework’s application extends naturally to the domain of security games,
where the intentions of agents are often uncertain and outcomes can be misleading.
In many security scenarios, from network defense to infrastructure protection, an
adversary may seek to behave in a manner that appears cooperative or benign
on the surface to avoid detection before striking [2]. A purely outcome-based
measure might fail to identify such a threat. Our counterfactually contrastive
metric, however, provides a more robust analytical tool. By evaluating an agent’s
policy against its selfish best-response baseline, the metric can quantify subtle
deviations from truly cooperative behavior. For instance, an agent consistently
choosing actions that align perfectly with its selfish interests, while providing
some incidental group benefit, could be flagged as non-cooperative and worthy of
further scrutiny.

Furthermore, the customizable and contextual nature of our measure is
particularly well-suited for analyzing collusion and coordinated attacks, a central
problem in security [57]. As noted, one can adjust the context to measure
cooperativeness within a specific subgroup of agents. In a security game, this
allows for the quantitative identification of potential adversarial coalitions. A high
cooperativeness score within a subgroup, especially when that subgroup’s actions
are detrimental to the wider system’s welfare, can serve as a formal signal for
collusive behavior. This approach could be used to analyze the resilience of multi-
agent systems against such threats or to develop adaptive defense mechanisms

that monitor for the emergence of anomalously cooperative clusters of agents
[28].

Acknowledgments. This work was supported by the John Templeton Foundation
(grant number 62220). We are grateful for helpful conversations with: other members of
the Laboratory for Intelligent Probabilistic Systems; Tom Griffiths and members of the
Princeton Computational Cognitive Science Lab; and the 2023 Cooperative Al Summer
School.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.



(1]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

Bibliography

Agapiou, J.P., Vezhnevets, A.S., Duéfiez-Guzman, E.A., Matyas, J., Mao, Y.,
Sunehag, P., Koster, R., Madhushani, U., Kopparapu, K., Comanescu, R., et al.:
Melting Pot 2.0. arXiv preprint arXiv:2211.13746 (2022)

Alpcan, T., Bagar, T.: Network Security: A Decision and Game-Theoretic Approach.
Cambridge University Press (2010)

Arrow, K.J., Sen, A., Suzumura, K.: Handbook of Social Choice and Welfare, vol. 2.
Elsevier (2010)

Axelrod, R., Hamilton, W.D.: The evolution of cooperation. Science 211(4489),
1390-1396 (1981)

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., Zhang, Q.: JAX:
composable transformations of Python+NumPy programs (2018), http://github.
com/google/jax

Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K., Graepel, T.: Coop-
erative Al: machines must learn to find common ground (2021)

Dafoe, A., Hughes, E., Bachrach, Y., Collins, T., McKee, K.R., Leibo, J.Z., Larson,
K., Graepel, T.: Open problems in cooperative Al. arXiv preprint arXiv:2012.08630
(2020)

Dawes, R.M.: Social dilemmas. Annual Review of Psychology (1980)

Du, Y., Leibo, J.Z., Islam, U., Willis, R., Sunehag, P.: A review of cooperation in
multi-agent learning. arXiv preprint arXiv:2312.05162 (2023)

Duéniez-Guzman, E.A., Sadedin, S., Wang, J.X., McKee, K.R., Leibo, J.Z.: A
social path to human-like artificial intelligence. Nature Machine Intelligence 5(11),
1181-1188 (2023)

Foerster, J.N.: Deep Multi-Agent Reinforcement Learning. Ph.D. thesis, University
of Oxford (2018)

Foerster, J.N., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S.: Coun-
terfactual multi-agent policy gradients. In: Mcllraith, S.A.; Weinberger, K.Q.
(eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intel-
ligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence
(IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018. pp.
2974-2982. AAAI Press (2018). https://doi.org/10.1609/AAAI.V32I1.11794,
https://doi.org/10.1609/aaai.v32i1.11794

Hamilton, W.D., Hamilton, W.D.: Narrow roads of gene land: evolution of social
behaviour, vol. 1. Oxford University Press on Demand (1996)

Hertz, U., Koster, R., Janssen, M., Leibo, J.Z.: Beyond the matrix: Experimental
approaches to studying social-ecological systems (2023)

Hughes, E., Leibo, J.Z., Phillips, M., Tuyls, K., Duenez-Guzman, E.,
Garcia Castafieda, A., Dunning, 1., Zhu, T., McKee, K., Koster, R., et al.: In-
equity aversion improves cooperation in intertemporal social dilemmas. Advances
in Neural Information Processing Systems 31 (2018)

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Ortega, P., Strouse, D., Leibo,
J.Z., De Freitas, N.: Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In: International Conference on Machine Learning. pp.
3040-3049. PMLR (2019)


http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1609/AAAI.V32I1.11794
https://doi.org/10.1609/AAAI.V32I1.11794
https://doi.org/10.1609/aaai.v32i1.11794

[17]

18]
[19]
[20]
21]

22]

23]

24]

[25]
[26]

[27]

[28]

[29]
[30]
31)
[32)

33]

34]

[35]

[36]

Measuring Cooperation with Counterfactual Planning 15

Kleiman-Weiner, M., Ho, M.K., Austerweil, J.L., Littman, M.L., Tenenbaum, J.B.:
Coordinate to cooperate or compete: abstract goals and joint intentions in social
interaction. In: CogSci (2016)

Kollock, P.: Social dilemmas: The anatomy of cooperation. Annual Review of
Sociology 24(1), 183—214 (1998)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. Computer Science
Review 3(2), 65-69 (2009)

Kropotkin, K.P.: Mutual aid: A factor of evolution. Black Rose Books Ltd. (2021)
Leibo, J.Z., Hughes, E., Lanctot, M., Graepel, T.: Autocurricula and the emergence
of innovation from social interaction: A manifesto for multi-agent intelligence
research. arXiv preprint arXiv:1903.00742 (2019)

Leibo, J.Z., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent
reinforcement learning in sequential social dilemmas. In: Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems. pp. 464-473 (2017)
Lerer, A., Peysakhovich, A.: Maintaining cooperation in complex social dilemmas
using deep reinforcement learning. arXiv preprint arXiv:1707.01068 (2017)
Loftin, R., Bandyopadhyay, S., Celikok, M.M.: On the complexity of learning to
cooperate with populations of socially rational agents (2024), https://arxiv.org/
abs/2407.00419

Luce, R.D., Raiffa, H.: Games and decisions: Introduction and critical survey.
Courier Corporation (1989)

Macy, M.W., Flache, A.: Learning dynamics in social dilemmas. Proceedings of
the National Academy of Sciences 99(suppl_3), 7229-7236 (2002)

Mao, Y., Reinecke, M.G., Kunesch, M., Duéfiez-Guzman, E.A., Comanescu, R.,
Haas, J., Leibo, J.Z.: Doing the right thing for the right reason: Evaluating artificial
moral cognition by probing cost insensitivity. arXiv preprint arXiv:2305.18269
(2023)

Mazrooei, P., Archibald, C., Bowling, M.: Automating collusion detection in
sequential games. In: Proceedings of the AAATI Conference on Artificial Intelligence.
vol. 27, pp. 675682 (2013)

Mordatch, 1., Abbeel, P.: Emergence of grounded compositional language in multi-
agent populations. arXiv preprint arXiv:1703.04908 (2017)

Nowak, M., Sigmund, K.: A strategy of win-stay, lose-shift that outperforms
tit-for-tat in the prisoner’s dilemma game. Nature 364(6432), 56-58 (1993)
Paternotte, C.: Minimal cooperation. Philosophy of the Social Sciences 44(1),
45-73 (2014)

Pefia, J., Noldeke, G.: Cooperative dilemmas with binary actions and multiple
players (2023)

Peng, B., Rashid, T., Schroeder de Witt, C., Kamienny, P.A., Torr, P., Béhmer, W.,
Whiteson, S.: Facmac: Factored multi-agent centralised policy gradients. Advances
in Neural Information Processing Systems 34, 12208-12221 (2021)

Perolat, J., Leibo, J.Z., Zambaldi, V., Beattie, C., Tuyls, K., Graepel, T.: A
multi-agent reinforcement learning model of common-pool resource appropriation.
Advances in Neural Information Processing Systems 30 (2017)

Rapoport, A.; Chammah, A.M., Orwant, C.J.: Prisoner’s dilemma: A study in
conflict and cooperation, vol. 165. University of Michigan press (1965)
Rutherford, A., Ellis, B., Gallici, M., Cook, J., Lupu, A., Ingvarsson, G., Willi,
T., Khan, A., Schroeder de Witt, C., Souly, A., et al.: Jaxmarl: Multi-agent rl
environments and algorithms in jax. In: Proceedings of the 23rd International
Conference on Autonomous Agents and Multiagent Systems. pp. 24442446 (2024)


https://arxiv.org/abs/2407.00419
https://arxiv.org/abs/2407.00419

16

37]
[38]
[39]
[40]
[41]

[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]
[56]

[57]

S.A. Barnett et al.

Schelling, T.C.: The Strategy of Conflict: with a new Preface by the Author.
Harvard University Press (1980)

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

Shapley, L.S.: Notes on the n-person game — ii: The value of an n-person game.
Tech. Rep. RM-670-PR, RAND Corporation, Santa Monica, Calif. (August 1951)
Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sciences
39(10), 1095-1100 (1953)

Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press (2008)

Singer-Clark, T.: Morality metrics on iterated prisoners dilemma players (2014)
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

Tan, M.: Multi-agent reinforcement learning: Independent vs. cooperative agents.
In: Proceedings of the Tenth International Conference on Machine Learning. pp.
330-337 (1993)

Tang, N., Gong, S., Zhao, M., Gu, C., Zhou, J., Shen, M., Gao, T.: Exploring
an imagined “we” in human collective hunting: Joint commitment within shared
intentionality. In: Proceedings of the Annual Meeting of the Cognitive Science
Society. vol. 44 (2022)

Tang, N., Stacy, S., Zhao, M., Marquez, G., Gao, T.: Bootstrapping an imagined
we for cooperation. In: CogSci (2020)

Tomasello, M.: Why we cooperate. MIT press (2009)

Trivers, R.L.: The evolution of reciprocal altruism. The Quarterly Review of Biology
46(1), 35-57 (1971)

Tuomela, R.: What is cooperation? Erkenntnis pp. 87-101 (1993)

Vinitsky, E., Koster, R., Agapiou, J.P., Duénez-Guzmén, E.A., Vezhnevets, A.S.,
Leibo, J.Z.: A learning agent that acquires social norms from public sanctions in
decentralized multi-agent settings. Collective Intelligence 2(2) (2023)

Wang, J., Zhang, Y., Gu, Y., Kim, T.K.: Shaq: Incorporating shapley
value theory into multi-agent g-learning. In: Koyejo, S., Mohamed, S., Agar-
wal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural In-
formation Processing Systems. vol. 35, pp. 5941-5954. Curran Associates,
Inc. (2022), https://proceedings.neurips.cc/paper_files/paper/2022/file/
27985d21£0b751b933d675930aa25022-Paper-Conference. pdf

West, S.A., Griffin, A.S., Gardner, A.: Social semantics: altruism, cooperation,
mutualism, strong reciprocity and group selection. Journal of Evolutionary Biology
20(2), 415-432 (2007)

Willis, R., Du, Y., Leibo, J.Z., Luck, M.: Resolving social dilemmas with minimal
reward transfer. arXiv preprint arXiv:2310.12928 (2023)

Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., Wu, Y.: The surpris-
ing effectiveness of PPO in cooperative multi-agent games. Advances in Neural
Information Processing Systems 35, 24611-24624 (2022)

Yuan, L., Zhang, Z., Li, L., Guan, C., Yu, Y.: A survey of progress on cooperative
multi-agent reinforcement learning in open environment (2023)

Zhao, M., Tang, N., Dahmani, A.L., Zhu, Y., Rossano, F., Gao, T.: Sharing rewards
undermines coordinated hunting. Journal of Computational Biology (2022)
Zhou, C.V., Leckie, C., Karunasekera, S.: A survey of coordinated attacks and
collaborative intrusion detection. Computers Security 29(1), 124-140 (2010)


https://proceedings.neurips.cc/paper_files/paper/2022/file/27985d21f0b751b933d675930aa25022-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/27985d21f0b751b933d675930aa25022-Paper-Conference.pdf

Measuring Cooperation with Counterfactual Planning 17

A Three-player Tabular Cleanup

The setup of the three-player version of Tabular Cleanup is the same, with the
following changes to the policy to reflect the greater number of players:

— Always X: In this case, Always Punish punishes another player at random.

— TFT: In this case, TFT n will clean if n players are also cleaning, and will
eat otherwise. Hence, TFT 2 is a more “suspicious” reciprocator than TFT 1
[1].

— Nash: This policy does not change, though it is worth noting that it is still a
Nash equilibrium to the game if all players choose this policy.

— Prosocial: This policy also does not change, though it is no longer maximally
prosocial in the three-player version. In fact, there is no maximally prosocial
policy for this game that is symmetric across all player indices.

B Full results across multiple welfare functions for all
tabular games

We evaluate the cooperativeness measure on each game using three different wel-
fare metrics. Let Vi, Va, ..., Vv denote the values for N agents in the environment.
These metrics are then defined as:

N
— Total Value: )°." | V;.
— Minimum Value: min;—1 25 V;.

— Equality: 1 — 2NNV,

C Experiment Details

The experiments in Sec. 5 were run on Tyan Thunder servers, with an NVidia
RTX A5000 GPU used for Sec. 5.4. Each training run (across all random seeds)
takes no more than 15 minutes.

MARL models were trained with an MLP actor-critic architecture using the
PPO algorithm [38], with the hyperparameters shown in Table 1.
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Fig. 7. Cooperativeness of six common deterministic policies in the Iterated Prisoner’s
Dilemma, in the context of each other policy. The cooperativeness is valued on the
initial state, with a discount factor v = 0.9.
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Table 1. MARL training hyperparameters

Name Value
Number of Hidden Layers 2
Layer Width 64
Layer Activation tanh
Learning Rate (LR) 2.5e-4
Number of Steps 128
Total Timesteps 2e7
Update Epochs 4
Number of Minibatches 4
Discount Factor 0.99
GAE Lambda 0.95
Clip Epsilon 0.2
Entropy Coefficient 0.01
Value Function Coefficient 0.5
Max Gradient Norm 0.5
Anneal Learning Rate True
Initial Random Seed 30
Number of Environments 16

Number of Seeds within each Environment

10
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